
PHGN200: All Sections Recitation 6 March 27, 2007

1. Those damn infinite and semi-infinite (half-infinite) wires!

(a) Consider a semi-infinite wire carrying current I, see Fig. 1. Find the magnetic field, ~B, in the first
quadrant, i.e., x ≥ 0, y > 0, z = 0. You may find∫ ∞

0

η

[(ζ − w)2 + η2]3/2
dw =

1

η
+

ζ

η
√

ζ2 + η2
(1)

useful.

x

y

I

Figure 1: A semi-infinite wire (from 0 to ∞) carrying current I is shown in blue.

Solution: The magnetic field is given by

~B =
µo

4π

∫
I d~̀× ~r

r3
, (2)

where ~r = ~rf−~rs, and d~̀ should really be d~rs. Against all of my wishes, we will NOT use d~rs because

your book and lecture notes call it d~̀ and it’s important to have uniform notation. Recall that ~rs is
the source variable and ~rf is the field variable. Computing ~rf yields

~rf = x ı̂̂ı̂ı + y ̂̂̂, (3)

since we want to know the magnetic field anywhere in the first quadrant, i.e., x ≥ 0, y > 0, z = 0 .
Computing ~rs yields

~rs = xs ı̂̂ı̂ı, (4)

since the wire that produces the field lies on the x-axis [why is there an “s” subscript on x in (4)?].
Taking the difference between (3) and (4) yields

~r = (x− xs) ı̂̂ı̂ı + y ̂̂̂. (5)



PHGN200: All Sections Recitation 6 March 27, 2007

d~̀ is computed in the “usual way”, i.e.,

~̀ = xs ı̂̂ı̂ı [compare this to (4)]

d~̀

dxs

= ı̂̂ı̂ı

d~̀ = dxs ı̂̂ı̂ı. (6)

Substituting (5) and (6) into (2) yields

~B =
µoI

4π

∫ ∞

0

y

[(x− xs)2 + y2]3/2
dxs k̂̂k̂k. (7)

Finally, evaluating the integral in (7) via (1) yields

~B =
µoI

4π

(
1

y
+

x

y
√

x2 + y2

)
k̂̂k̂k. (8)

(b) Consider an infinite wire carrying current I, see Fig. 2. Find the magnetic field, ~B, in the first quadrant,
i.e., x ≥ 0, y > 0, z = 0. You may find∫ ∞

−∞

η

[(ζ − w)2 + η2]3/2
dw =

2

η
(9)

useful.

x

y

I

Figure 2: An infinite wire (from −∞ to ∞) carrying current I is shown in blue.
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Solution: The magnetic field due to an infinite wire is given by (7) but with different limits of
integration [why?]. Thus,

~B =
µoI

4π

∫ ∞

−∞

y

[(x− xs)2 + y2]3/2
dxs k̂̂k̂k. (10)

Finally, evaluating the integral in (10) via (9) yields

~B =
µoI

2πy
k̂̂k̂k. (11)

(c) Where does the magnetic field due to a semi-infinite wire equal one half the magnetic field of an infinite

wire, i.e., ~Bsemi-infinite = ~Binfinite/2?

Solution: The magnetic field due to a semi-infinite wire is equal to the magnetic field of an infinite
wire divided by two when

~Bsemi-infinite =
~Binfinite

2

µoI

4π

(
1

y
+

x

y
√

x2 + y2

)
k̂̂k̂k =

µoI

4πy
k̂̂k̂k

x

y
√

x2 + y2
= 0

x = 0, i.e, on the y-axis.

What is so special about the y-axis?
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2. A blue wire carrying current I = Iot
3/3 is wound evenly on a torus of rectangular cross section. There are N

turns of the blue wire in all. A red wire is thrown over the torus and is connected to a resistor, R, see Fig. 3.
Find the magnitude and direction (clockwise or counterclockwise) of the current in the red wire, Ired wire.

z

w

y

x

I

R

r1

r2

Figure 3: A blue wire carrying current I = Iot
3/3 is wound evenly on a torus of rectangular cross section, with

inner radius r1 and outer radius r2. There are N turns of the blue wire in all. A red wire is thrown over the torus
and is connected to a resistor, R.

Solution: The magnetic field produced by the blue wire can be found via Ampere’s Law,∮
~B · d~̀ = µoIencl., (12)

where Iencl. is the current enclosed by the Amperian loop. We choose the Amperian loop to be a circle of
radius r centered at the origin (why?), see Fig. 4.
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z
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r1
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r

Figure 4: Amperian loop of radius r, laying “in the torus” is shown.

By symmetry, ~B is parallel to d~̀; thus, (12) yields∮
Bd` = µoIencl.. (13)

By symmetry, magnetic field B is constant on the Amperian loop; thus, (13) yields

B

∮
d` = µoIencl.

B2πr = µoIencl.

B =
µoIencl.

2πr
,

where Iencl. = NI. Thus, the magnetic field produced by the blue wire is given by

B =
µoNI

2πr
. (14)

The magnetic flux through the area enclosed by the red wire is given by

ΦB =

∫
~B · d ~A

=

∫ r2

r1

B wdr. (15)
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Why are the limits of integration from r1 to r2 if we are calculating the magnetic flux through the area
enclosed by the red wire? Substituting (14) into (15) and integrating yields

ΦB =
µoNIw

2π
ln

(
r2

r1

)
. (16)

The magnitude of the induced emf is given by

|E| =
∣∣∣∣dΦB

dt

∣∣∣∣ . (17)

Substituting (16) into (17) yields

|E| = µoNw

2π
ln

(
r2

r1

) ∣∣∣∣dI

dt

∣∣∣∣
=

µoNw

2π
ln

(
r2

r1

)
Iot

2. (18)

Substituting (18) into Ohm’s law yields

Ired wire =
µoNwIo

2πR
ln

(
r2

r1

)
t2,

where Ired wire flows in the clockwise direction (why?).
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3. Consider a conducting rod sitting on the top of an incline. The top of the incline is made from pair of
frictionless conducting rails. There is a resistor, R, that connects the two rails, and a constant magnetic
field directed vertically upwards with a magnitude Bo, see Fig. 5. The separation distance between the two
frictionless conducting rails is L. If at time t = 0, the rod is released from rest, find the velocity of the rod as
a function of time.

LR

Top View

Side View θ

x

y

~B

Figure 5: Top and side views of the conducting incline are shown. Notice that the pair of frictionless conducting
rails, the conducting rod and the resistor form a complete circuit.
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Solution: First, we write the magnetic field in terms of the given coordinate system, see Fig. 5,

~B = Bo (− sin θ ı̂̂ı̂ı + cos θ ̂̂̂) . (19)

The magnetic flux through the area enclosed by the resistor, rails and the rod is given by

ΦB =

∫
~B · d ~A

=

∫ x

xo

~B · Ldx′ ̂̂̂

=

∫ x

xo

BoL cos(θ) dx′

= BoL cos(θ)(x− xo). (20)

The magnitude of the induced emf is given by

|E| =
∣∣∣∣dΦB

dt

∣∣∣∣ . (21)

Substituting (20) into (21) and identifying dx
dt

as velocity v yields

|E| = BoL cos(θ)v. (22)

Substituting (22) into Ohm’s law yields

I =
BoL cos(θ)

R
v, (23)

where I is the current in the rod flowing in the positive k̂̂k̂k direction (why?). The magnetic force on the
rod is given by

~FB =

∫
Id~̀× ~B

=

∫ L

0

Idz k̂̂k̂k × [Bo (− sin θ ı̂̂ı̂ı + cos θ ̂̂̂)] , used (19) for ~B

= −BoIL (cos θ ı̂̂ı̂ı + sin θ ̂̂̂) , (24)

where I is given by (23). Writing the sum of all forces in the ı̂̂ı̂ı direction yields

−B2
oL

2 cos2 θ

R
v + mg sin θ = m

dv

dt
. (25)

We must solve (25) for v, so we rewrite (25) in the more manageable form

−av + b =
dv

dt
, (26)
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where a = B2
oL2 cos2 θ

Rm
and b = g sin θ. Now, it is a trivial matter to find v, so we proceed without any

comments.

−
∫

dt =

∫
dv

av − b

−t + C =
ln (av − b)

a
C1e

−at = av − b

b

a

(
1− e−at

)
= v. (27)

Finally, substituting a and b into (27) yields

v(t) =
Rmg sin θ

B2
oL

2 cos2 θ

(
1− e−

B2
oL2 cos2 θ

Rm
t

)
. (28)

It is interesting to plot (28) for some parameter values, see Fig. 6.

2 4 6 8 10
t

0.5

1

1.5

2

v

Figure 6: The velocity of the rod is shown for the following parameter values: B2
oL2 cos2 θ

Rm
= 1 and g sin θ = 2.

Notice that the graph is flat for roughly t > 5. Can you explain this flat region physically?

Page 9


